
Évolution des
outils d'aide au
développement
: focus sur l'IA

Veille technologique BTS SIO SLAM –
Cyrille COUR 2025/2027

Cette photo par Auteur inconnu est soumise à la licence CC BY-NC

https://iaarbook.github.io/inteligencia-artificial/
https://creativecommons.org/licenses/by-nc/3.0/

Plan de ma
veille
technologique

1. Introduction

CONTEXTE ET ENJEU OBJECTIF DE LA VEILLE MÉTHODOLOGIE

Contexte et
enjeu

• Le développement logiciel a connu de profondes
mutations au cours des dernières décennies. Des
éditeurs de texte basiques aux environnements
de développement intégrés sophistiqués, les
outils à disposition des développeurs n'ont cessé
d'évoluer pour améliorer la productivité et la
qualité du code. Aujourd'hui, l'intelligence
artificielle s'impose comme une nouvelle
révolution dans cet écosystème, transformant la
manière dont le code est écrit, testé et maintenu.

Objectif de la
veille

• Cette veille technologique vise à :

• - Comprendre l'évolution historique des outils
d'aide au développement

• - Identifier les principales solutions IA
actuellement utilisées par les développeurs

• - Analyser l'impact de l'IA sur les pratiques de
développement et la productivité

• - Évaluer les opportunités et les limites de ces
nouveaux outils

• - Anticiper les tendances futures dans ce
domaine

Méthodologie

• Cette étude s'appuie sur une
analyse de sources variées : blogs
techniques spécialisés,
documentation officielle des outils,
études et rapports du secteur
(Stack Overflow Survey, GitHub
Octoverse), ainsi que des retours
d'expérience de la communauté des
développeurs. La veille est
structurée en trois axes : les
frameworks, les IDE et l'intelligence
artificielle.

2. Les Frameworks

DÉFINITION ET OBJECTIF UTILISATION CONCRÈTE ET
APPORT AU QUOTIDIEN

EVOLUTION ET TENDANCES
ACTUELLES

Définition et Objectif

Un framework (ou cadre de travail en français) est une
structure logicielle préconçue qui fournit une base

réutilisable pour développer des applications. Il impose
une architecture et des conventions de codage, tout en
offrant des bibliothèques de fonctions et des outils qui

accélèrent le développement. Contrairement à une
simple bibliothèque que l'on appelle quand on en a
besoin, un framework définit le flux de contrôle de

l'application : c'est le principe d'inversion de contrôle
("Don't call us, we'll call you").

Éviter de réinventer la roue en proposant des solutions
éprouvées aux problèmes récurrents du développement

logiciel.

UTILISATION CONCRÈTE ET APPORT AU QUOTIDIEN

Les frameworks structurent le
travail quotidien en fournissant un

squelette d'application prêt à
l'emploi.

Productivité accrue : Les
composants réutilisables et les

générateurs de code permettent
de créer rapidement des
fonctionnalités standards

(authentification, formulaires,
gestion de base de données)

Architecture cohérente : Le
framework impose une

organisation du code qui facilite la
collaboration en équipe et la

maintenance à long terme

Résolution de problèmes
récurrents : Gestion du routing,
validation des données, sécurité
(protection CSRF, injection SQL)

sont déjà intégrées

Écosystème de plugins : Accès à
des milliers d'extensions pour

ajouter des fonctionnalités sans les
coder from scratch

Debugging facilité : Outils de
développement intégrés, messages
d'erreur explicites, documentation

détaillée

EVOLUTION ET TENDANCES ACTUELLES

Les frameworks évoluent constamment pour répondre aux nouvelles exigences du web moderne. On observe
plusieurs tendances majeures :

Server-Side Rendering (SSR) et Static Site Generation (SSG) : Des frameworks comme Next.js ou Nuxt.js
combinent le meilleur des deux mondes (performance et interactivité)

Approche "Zero-config" : Réduction de la configuration initiale pour démarrer plus rapidement (ex: Vite qui
remplace Webpack)

Optimisation des performances : Frameworks compilés comme Svelte qui produisent moins de code
JavaScript côté client

Full-stack JavaScript : Uniformisation avec Node.js permettant d'utiliser le même langage front et back

3. Les IDE

Définition et Objectif Utilisation concrète et
apport au quotidien

Evolution et tendances
actuelles

Définition et Objectif

Un IDE (Integrated Development Environment)
est un logiciel qui regroupe l'ensemble des outils
nécessaires au développement logiciel dans une

interface unifiée. Il combine au minimum un
éditeur de code, un compilateur/interpréteur, un

débogueur et des outils de gestion de projet.
Contrairement à un simple éditeur de texte, l'IDE

comprend le code et offre une assistance
intelligente tout au long du processus de

développement.

Centraliser tous les outils de développement dans
un seul environnement pour maximiser

l'efficacité et réduire les erreurs.

Utilisation concrète et apport au quotidien

Autocomplétion intelligente (IntelliSense) :Suggestion automatique de code basée sur le contexte, affichage de la documentation des fonctions en temps réel,
gain de temps considérable sur la frappe

Détection d'erreurs en temps réel : Soulignement immédiat des erreurs de syntaxe, warnings sur les mauvaises pratiques,
prévention des bugs avant même l'exécution

Débogage avancé : Points d'arrêt (breakpoints), inspection des variables en cours d'exécution, navigation pas à pas dans le code,
visualisation de la stack trace

Refactoring automatisé : Renommage de variables/fonctions dans tout le projet, extraction de méthodes,
réorganisation du code en quelques clics

Intégration Git : Gestion des versions directement dans l'interface, visualisation des différences, résolution de conflits facilitée

Extensions et personnalisation : Ajout de fonctionnalités via marketplace (linters, formatters, thèmes),
adaptation aux besoins spécifiques de chaque projet

Gestion de projet intégrée : Navigation rapide entre fichiers, recherche globale puissante, organisation par workspaces

Evolution et tendances actuelles

L'histoire des IDE
montre une évolution

constante vers plus
d'intelligence et de

connectivité :

Années 90-2000 : IDE
lourds et spécialisés

(Visual Studio, Eclipse,
IntelliJ) principalement

pour Java et C++

Années 2010 :
Émergence d'éditeurs
légers comme Sublime

Text, puis Atom

2015-aujourd'hui : VS
Code révolutionne le

marché avec un
équilibre parfait entre
légèreté et puissance

2025-aujourd’hui :
intégration de l’IA dans

les IDE

4. L’intelligence Artificielle

DÉFINITION ET OBJECTIF UTILISATION CONCRÈTE ET
APPORT AU QUOTIDIEN

EVOLUTION ET TENDANCES
ACTUELLES

Définition et Objectifs

L'intelligence artificielle appliquée au développement
logiciel désigne l'ensemble des technologies basées sur
des modèles d'apprentissage automatique (notamment

les Large Language Models - LLM) capables de
comprendre, générer et optimiser du code. Ces outils

vont au-delà de la simple autocomplétion en proposant
une assistance contextuelle avancée : génération de

fonctions entières, explication de code existant,
détection de bugs, traduction entre langages, et même

architecture de solutions.

Augmenter les capacités du développeur en lui
fournissant un assistant intelligent capable de

comprendre l'intention et de proposer des solutions
adaptées au contexte.

Utilisation concrète et apport au quotidien

Génération de code boilerplate : Création automatique de structures répétitives (classes, constructeurs, getters/setters, configurations), gain de temps massif sur les tâches
peu créatives

Complétion contextuelle avancée : Suggestions de fonctions entières basées sur les commentaires ou le début du code, compréhension du contexte du projet (imports,
variables existantes)

Explication et documentation : Analyse de code legacy incompréhensible, génération automatique de commentaires et documentation, traduction de code complexe en
langage simple

Debugging assisté : Analyse des messages d'erreur avec proposition de solutions, identification des causes probables d'un bug, suggestion de corrections

Refactoring et optimisation : Proposition d'améliorations de performance, détection de code smell et anti-patterns, modernisation de code ancien

Génération de tests : Création automatique de tests unitaires basés sur une fonction, génération de cas de test edge cases

Traduction entre langages : Conversion de Python vers JavaScript, adaptation de snippets trouvés en ligne, migration de codebase

Apprentissage accéléré : Les juniors peuvent apprendre en observant le code généré, compréhension rapide de nouvelles technologies/frameworks, réduction de la
dépendance à Stack Overflow

Evolution et tendances actuelles.

De l'autocomplétion à
l'assistance intelligente :

L'intégration de l'IA dans
le développement a connu

une accélération
fulgurante :

2021 : Lancement de
GitHub Copilot (basé sur
OpenAI Codex), première

adoption massive d'un
assistant IA

2022-2023 : Explosion des
LLM (ChatGPT, GPT-4,

Claude, Gemini),
démocratisation de l'IA

générative

2024-2025 : Intégration
native dans tous les IDE

majeurs, spécialisation des
modèles pour le code

5. Impact
de ces 3
outils.

L’impact des frameworks sur
les développeurs

L’impact des IDE sur les
développeurs

L’impact de l’intelligence
Artificielle sur les développeurs

L’impact des
frameworks
sur les
développeurs

Accélération du développement

Focus sur la valeur métier

Montée en compétence structurée

Spécialisation vs polyvalence

Standardisation et cohérence

Ecosystème collaboratif

Confort de développement

L’impact des
IDE sur les
développeurs

Gain de temps considérable

Debugging efficace

Apprentissage facilité

Dépendance aux outils

Standardisation des pratiques

Polyvalence accrue

Confort et fluidité

L’impact de
l’intelligence
Artificielle sur
les
développeurs

Accélération massive du développement

Réduction des tâches répétitives

Prototypage ultra-rapide

Apprentissage autonome facilité

Érosion des compétences fondamentales

Démocratisation du développement

Standardisation du code généré

Menace perçue sur l'emploi

6. Conclusion.

Synthèse de l'évolution
des outils

L'IA : rupture ou
continuité ?

Slides suivantes, mes
sources…

Synthèse de
l'évolution
des outils

• 1. Les Frameworks - Structuration

• Organisation et architecture du code

• Composants réutilisables et bonnes pratiques intégrées

• Gain de temps sur les fonctionnalités standards

• 2. Les IDE - Centralisation

• Tous les outils dans un seul environnement

• Assistance intelligente et détection d'erreurs

• Optimisation du workflow de développement

• 3. L'IA - Augmentation

• Compréhension de l'intention du développeur

• Génération et optimisation de code

• Co-développeur intelligent et contextuel

L'IA : rupture
ou
continuité ?

• Une rupture qualitative

• Changement de paradigme

• Frameworks et IDE : automatisation de tâches
techniques

• IA : compréhension de l'intention et génération de
solutions

• Passage d'un outil passif à un partenaire actif

• De l'assistance à la co-création

• Frameworks : fournissent des briques à assembler

• IDE : aident à écrire et corriger le code

• IA : conçoit et propose des solutions complètes

• Intelligence contextuelle

• Les outils précédents suivent des règles prédéfinies

• L'IA adapte ses réponses au contexte unique de
chaque projet

• Capacité de raisonnement et de créativité

• Mais aussi une continuité

• Même objectif fondamental

• Augmenter la productivité du développeur

• Réduire les erreurs et améliorer la qualité

• Automatiser les tâches répétitives

• Intégration dans l'existant

• L'IA s'intègre dans les IDE (Copilot dans VS Code)

• Elle génère du code utilisant des frameworks

• Elle s'inscrit dans le workflow habituel

• Évolution progressive de l'automatisation

• Années 90 : Autocomplétion basique

• Années 2000 : IntelliSense contextuel

• Années 2010 : Refactoring automatisé

• Années 2020 : Génération intelligente par IA

L’IA rupture
ou
continuité ?

7. Annexes

Mes
sources

PULL

Mes
sources
PUSH

Comment
je les ai

configurés

Mes sources PUSH

Mes sources
PUSH

Mes feeds suivis sur Feeldy:

Les feeds sont à ajouter manuellement

On peut créer des dossiers (VT:
l’évolution des outils d’aides au
développement)

Mes sources
PUSH

• Google alertes:

• Mes themes ajoutés

• Possibilités d’envoyer les
themes sur différents
comptes (ou sur les
mêmes)

Mes sources
PULL

• PEARLTREES

• Création de plusieurs
sujets

• Création de perles dans
lesquelles ont mets
textes, vidéos ou photo

• Proposition de themes
commun par pearltrees

Mes sources
PULL

• Recherches manuelles sur
des forums (Reddit,
Github, 01net)

• Recherches ou
recommandations de
vidéos d’expert sur
Youtube

Fin de présentation.

MERCI DE M'AVOIR ÉCOUTÉ ! LIEN DE MON PEARLTREES :
HTTPS://WWW.PEARLTREES.COM/CYRILLECOUR

LIEN DE MON PORTFOLIO :
HTTPS://CCOUR.ARISTEECAMPUS.ORG/

https://www.pearltrees.com/cyrillecour/intelligence-developemment/id99236789

